M@CBETH: a microarray classification benchmarking tool

نویسندگان

  • Nathalie Pochet
  • Frizo A. L. Janssens
  • Frank De Smet
  • Kathleen Marchal
  • Johan A. K. Suykens
  • Bart De Moor
چکیده

Microarray classification can be useful to support clinical management decisions for individual patients in, for example, oncology. However, comparing classifiers and selecting the best for each microarray dataset can be a tedious and non-straightforward task. The M@CBETH (a MicroArray Classification BEnchmarking Tool on a Host server) web service offers the microarray community a simple tool for making optimal two-class predictions. M@CBETH aims at finding the best prediction among different classification methods by using randomizations of the benchmarking dataset. The M@CBETH web service intends to introduce an optimal use of clinical microarray data classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

Evaluating the Efficiency and Benchmarking of Regions in an Electricity Distribution Company Using a Public Lighting Asset Management Model

Public lighting networks are constructed and maintained to provide social security and traffic safety. Due to the expansion of cities, the development in public lighting is inevitable. In addition to new investment, the public lighting service and maintenance program imposes high costs on distribution companies. Since performance assessment methods focus on a combination of key performance indi...

متن کامل

Lossless Microarray Image Compression by Hardware Array Compactor

Microarray technology is a new and powerful tool for concurrent monitoring of large number of genes expressions. Each microarray experiment produces hundreds of images. Each digital image requires a large storage space. Hence, real-time processing of these images and transmission of them necessitates efficient and custom-made lossless compression schemes. In this paper, we offer a new archi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 21 14  شماره 

صفحات  -

تاریخ انتشار 2005